Orange Public Schools

Office of STEM-Focused Learning & Gifted Education Science Curriculum Guide

Physics Honors

Unit 1: Forces and Motion 23.5 Instructional Days

Board Approved: 9/13/23

ORANGE TOWNSHIP BOARD OF EDUCATION

Jeffrey Wingfield

Tyrone Tarver

PRESIDENT Shawneque Johnson

VICE PRESIDENT

Sueann Gravesande

MEMBERS

Samantha Crockett Derrick Henry Fatimah Turner, Ph.D. David Armstrong Siaka Sherif

SUPERINTENDENT OF SCHOOLS

Gerald Fitzhugh, II, Ed.D.

EXECUTIVE TEAM

Jason E. Ballard, CEFM, QPA, RSBO, Business Administrator/Board Secretary Faith Alcantara, Office of Innovation/Community Engagement Shelly Harper, Office of Special Education/Intervention Glasshebra Jones, Office of Human Resources Lamont T. Zachary, Assistant Business Administrator/Assistant Board Secretary Jacquelyn Blanton, Ed.D., Office of Early Learning Karen Harris, Office of Humanities David Scutari, Office of STEM-Focused Learning

PRINCIPALS

Jason Belton, Orange High School Yancisca Cooke, Ed.D., Forest Street Community School Natasha Cox, Park Avenue School Cayce Cummins, Ed.D., John Robert Lewis Early Childhood Center Dana Gaines, Oakwood Avenue Community School Carrie Halstead, Orange Preparatory Academy of Inquiry & Innovation Debra Joseph-Charles, Ed.D., Rosa Parks Community School Karen Machuca, Scholars Academy Dion Patterson, Heywood Avenue School Robert Pettit, Cleveland Street School (OLV) Devonii Reid, Ed.D., STEM Innovation Academy of the Oranges Erica Stewart, Ed.D., Twilight Program Denise White, Central Elementary School Patrick Yearwood, Lincoln Avenue School

ASSISTANT PRINCIPALS/DEAN OF STUDENTS

Ehimwenma Adeyin, Rosa Parks Community School Noel Cruz, Dean of Students, Lincoln Avenue School Michael Dixon, Orange Preparatory Academy of Inquiry & Innovation Anthony Frantantoni, Orange High School Kashiff Foster, Cleveland/Oakwood Sandra Guerra, Rosa Parks Community School Shannon Keogh, Forest Street Community School Yoniel Lopez, Ed.D., Orange High School Michelle Madariaga, Orange High School Aimie McKenzie-Smith, Lincoln Avenue School Dairon Montesino, Orange High School Gerald J. Murphy, Heywood Avenue School Emily Shaltuper, Orange Early Childhood Center Samantha Sica-Fossella, Orange Preparatory Academy of Inquiry & Innovation April Stokes, Park Avenue School Christina Tighe, Ed. D., Lincoln Avenue School Daniele Washington, Central Elementary School

SUPERVISORS

 Delia Abreu, ELA (3-8) & Media Specialists Tia Burnett, Testing MengLi Chi Liu, Mathematics (9-12) Jonathan Clerie, Visual & Performing Arts Jahmel Drakeford, CTE & Physical Education (K-8) Adriana Hernandez, ELA (K-2) & Media Specialists Belinda Komarica, Mathematics (K-5) Marc Levenson, Social Studies (K-12) Amina Mateen, Special Services Mohamed Metwally, STEM-Focused Learning (K-12) Janet McClouden, Ed.D., Special Services Henie Parillon, Science (K-12) Nurka Nieves, Ed.D., Bilingual/ESL & World Languages (K-5) Frank Tafur, Bilingual/ESL & World Languages (6-12) Marcey Thomas, ELA (9-12) Felicia Williams-Ware, Guidance (K-12)

"GOOD TO GREAT"

Table of Contents

l.	Yearlong Scope and Sequence	p. 1
١١.	Unit Overview & Conceptual Flow	p. 2
III.	Essential Questions / Enduring Understandings	р. 3
IV.	Performance Expectations	p. 4
V.	Interdisciplinary Connections	р. 5
VI.	Integrated Accommodations & Modifications	р. 6
VII.	21 st Century	р. 7
VIII.	NJSLS Career Readiness, Life Literacies, and Key Skills	р. 7
IX.	NJSLS Computer and Design Thinking	р. 9
Х.	Unit Pacing Guide	p. 10
XI.	Lesson Pacing Guide with Embedded Assessments	p. 11

YEARLONG SCOPE AND SEQUENCE						
UNIT 1	UNIT 2	UNIT 3	UNIT 4	UNIT 5		
Forces and Motion	Forces at a Distance	Energy Conversion	Waves and Electromagnetic Radiation	From the Nucleus to the Universe		
23.5 days	45 days	48 days	27.5 days	33.5 days		
In Storyline 1, students learn how to model motion using models that are grounded in mathematical relationships. They investigate and model uniform motion, nonuniform motion, circular motion, and projectile motion. Students also explore how various forces affect the motion of objects. Students explore the relationship between forces and motion. <i>This unit addresses HS-PS2-1, HS-PS2-2,</i> <i>HS-PS2-4, and HS-ESS2-1.</i>	In Storyline 2, students investigate gravitational forces, electrical forces, magnetic forces, and forces in materials. They connect orbital motion to gravitational forces and construct explanations about electric fields and currents. Students investigate gravitational, electric, and magnetic forces, and the forces within atoms. This unit addresses HS-PS1-3, HS-PS2-4, HS-PS2-5, HS-PS2-6, HS-PS3-5, and HS- ESS1-4.	In Storyline 3, students explore energy conversions by quantifying how much energy transfers between objects and energy fields. They use bar charts and equations to define systems and to model energy conversions. They consider heat transfer in engines, heat pumps, and Earth's interior, connecting the convection of Earth's mantle to plate tectonics. Students evaluate the costs and benefits associated with different methods of energy production and identify variables essential to a sustainable energy future for Earth's growing human population. Students explore energy conversions in collisions, in engines and heat pumps, and in electromagnetic systems. <i>This unit addresses HS-PS2-2, HS-PS2-3, HS-PS3-4, HS-PS3-5, HS-ESS2-1, HS-PS3-3, HS-PS3-2, and HS-ESS3-3.</i>	In Storyline 4, students explore waves and electromagnetic radiation, as well as technological applications of transmitting and capturing information and energy. In Investigation 1 1, students experiment with waves. In Investigation 12, students explore electromagnetic radiation. In Investigation 13, students design instrumentation to transmit information. Students investigate the properties and behaviors of waves, using mathematical relationships. This unit addresses HS-PS3-3, HS-PS4-1, HS-PS4-2, HS-PS4-3, HS-PS4-4, and HS- PS4-5.	In Storyline 5, students investigate and model atomic nuclei and the processes they undergo. They learn how the predictable decay processes of specific atomic nuclei are used by scientists to date materials. They also explore evidence relating to the origin of the universe and compare the sun to other stars in the universe. Students explore the beginning of the universe, the death of stars, and the radioactive decay of atoms. <i>This unit addresses HS-PS1-8, HS-ESS1-1, HS-ESS1-2, HS-ESS1-3, HS-ESS1-5, HS-ESS1-6, and HS-ESS2-1.</i>		

UNIT OVERVIEW AND CONCEPTUAL FLOW					
Content Area	Scie	ence	Course	Physics Honors	
Unit Plan Title	Uni	t 1: Forces and Motion	Duration	23.5 days	
		UNIT OVERVIEW			
In Storyline 1, students le and model uniform motio affect the motion of obje This unit addresses HS-PS2-1, F	In Storyline 1, students learn how to model motion using models that are grounded in mathematical relationships. They investigate and model uniform motion, nonuniform motion, circular motion, and projectile motion. Students also explore how various forces affect the motion of objects. Students explore the relationship between forces and motion. <i>This unit addresses HS-PS2-1, HS-PS2-2, HS-PS2-4, and HS-ESS2-1.</i>				
		CONCEPTUAL FLOW			
Anchoring Phenomen	Anchoring Phenomenon How will we get to Mars?				
Investigations		Investigation #1: Modeling Motion			
		 Experience 1 - Displacement and Velocity 			
		Experience 2 - Acceleration			
		Experience 3 - Circular and Projectile Motion			
		 Investigation #2: Forces Experience 1 - Force, Mass, and Acceleration Experience 2 - Types of Forces Experience 3 - Forces on Systems Experience 4 - Earth's Surface Forces 			

ESSENTIAL QUESTION(S) A	ND ENDURING UNDERSTANDINGS
-------------------------	----------------------------

	Essential Questions /Focus Questions	Enduring Understandings
٠	Why are people on Earth stuck here while astronauts	Newton's Law of Universal Gravitation provides the
	appear to be weightless?	mathematical models to describe and predict the
٠	How does the weight (force of gravity) of an astronaut	effects of gravitational forces between distant objects.
	of a specific mass (100 kg including gear) change at	 Forces at a distance are explained by fields
	specific distances from Earth as the shuttle flies toward	(gravitational) permeating space that can transfer
	the moon?	energy through space.
٠	How far away can my finger be from my sister or	 Different patterns may be observed at each of the
	brother if I want to zap them with static electricity?	scales at which a system is studied and can provide
		evidence for causality in explanations of the
		gravitational force between objects.
		 Coulomb's Law provides the mathematical models to
		describe and predict the effects of electrostatic forces
		between distant objects.
		Forces at a distance are explained by fields (electric and
		magnetic) that permeate space and can transfer energy
		through space.
		 Magnets or electric currents cause magnetic fields;
		electric charges or changing magnetic fields cause
		electric fields.
		• Different patterns may be observed at each of the
		scales at which a system is studied and can provide
		evidence for causality in explanations of electrostatic
		attraction and repulsion.

NGSS PERFORMANCE EXPECTATION(S)

Students who demonstrate understanding can:

- **HS-PS2-1** Analyze data to support the claim that Newton's second law of motion describes the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration.
- **HS-PS2-2** Use mathematical representations to support the claim that the total momentum of a system of objects is conserved when there is no net force on the system.
- **HS-PS2-4** Use mathematical representations of Newton's Law of Gravitation and Coulomb's Law to describe and predict the gravitational and electrostatic forces between objects.
- **HS-ESS2-1** Develop a model to illustrate how Earth's internal and surface processes operate at different spatial and temporal scales to form continental and ocean-floor features.

SCIENCE AND ENGINEERING	DISCIPLINARY CORE IDEAS	CROSSCUTTING CONCEPTS
Asking Questions and	PS2.A: Forces and Motion	X Patterns
Defining Problems	Newton's second law accurately predicts changes in	
	the motion of macroscopic objects.	⊠ Cause and Effect
Developing and Using	Momentum is defined for a particular frame of	
Models	reference: it is the mass times the velocity of the	\Box Scale Proportion and
inouclo	object.	Quantity
Planning and Carrying Out	If a system interacts with objects outside itself, the	Quantity
Investigations	total momentum of the system can change;	Systems and System Models
	however, any such change is balanced by changes in	
Analyzing and Interpreting	the momentum of objects outside the system.	Energy and Matter
Data	PS2.B: Types of Interactions	
	Newton's law of universal gravitation and Coulomb's	□ Structure and function
🛛 Using Mathematics and	law provide the mathematical models to describe	
Computational Thinking	and predict the effects of gravitational and	\boxtimes Stability and change
B	electrostatic forces between distant objects.	A Stability and change.
Constructing Explanations	Forces at a distance are explained by fields	
and Designing Solutions	(gravitational, electric, and magnetic) permeating	
	space that can transfer energy through space.	
Engaging in Argument from	Magnets or electric currents cause magnetic fields;	
Evidence	electric charges or changing magnetic fields cause	
	electric fields.	
Obtaining, Evaluating, and	ESS2.A: Earth Materials and Systems	
Communicating Information	Earth's systems, being dynamic and interacting,	
5	cause feedback effects that can increase or decrease	
	the original changes.	
	ESS2.B: Plate Tectonics and Large-Scale System	
	Interactions	
	the past and current movements of the rocks at	
	Earth's surface and provides a framework for	
	Landerstanding its geologic history. Plate meyoments	
	and ensuring its geologic filstory. Plate movements	
	features and for the distribution of most rocks and	
	minerals within Earth's crust (ESS2 B Grada & GPE)	
	minerals within Earth's crust. (ESSZ.D Graue & GBE)	

3-DIMENSIONAL LEARNING

INTERDISCIPLINARY CONNECTIONS

English Language Arts

RST.11-12.1Cite specific textual evidence to support analysis of science and technical texts, attending to important
distinctions the author makes and to any gaps or inconsistencies in the account. (HS-PS2-1)**RST.11-12.7**Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g.,
quantitative data, video, multimedia) in order to address a question or solve a problem. (HS-PS2-1)

WHST.11-12.9 Draw evidence from informational texts to support analysis, reflection, and research. (HS-PS2-1)

<u>SL.11-12.5</u> Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in

presentations to enhance understanding of findings, reasoning, and evidence and to add interest. (HS-ESS2-1)

Mathematics

MP.2 Reason abstractly and quantitatively. (HS-PS2-1) (HS-PS2-2) (HS-PS2-4) (HS-ESS2-1)

MP.4 Model with mathematics. (HS-PS2-1) (HS-PS2-2) (HS-PS2-4) (HS-ESS2-1)

HSN.Q.A.1: Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. (HS-PS2-1) (HS-PS2-2) (HS-PS2-4) (HS-ESS2-1)

HSN.Q.A.2: Define appropriate quantities for the purpose of descriptive modeling. (HS-PS2-1) (HS-PS2-2) (HS-PS2-4) (HS-ESS2-1)

HSN.Q.A.3: Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (HS-PS2-1) (HS-PS2-2) (HS-PS2-4) (HS-ESS2-1)

HSA.SSE.A.1: Interpret expressions that represent a quantity in terms of its context. (HS-PS2-1) (HS-PS2-4)

HSA.SSE.B.3: Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. (HS-PS2-1) (HS-PS2-4)

HSA.CED.A.1: Create equations and inequalities in one variable and use them to solve problems. (HS-PS2-1) (HS-PS2-2) HSA.CED.A.2: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. (HS-PS2-1) (HS-PS2-2)

HSA.CED.A.4: Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. (HS-PS2-1) (HS-PS2-2)

HSF-IF.C.7: Graph functions expressed symbolically and show key features of the graph, by in hand in simple cases and using technology for more complicated cases. (HS-PS2-1)

HSS-IS.A.1: Represent data with plots on the real number line (dot plots, histograms, and box plots). (HS-PS2-1)

INTEGRATED ACCOMMODATIONS & MODIFICATIONS Special Education / 504 **English Language Learners** Adhere to all modifications and health concerns stated in Simplify written and verbal instructions • each IEP. Use manipulatives to promote conceptual understanding • Give students a MENU of options, allowing them to choose and enhance vocabulary usage . assignments from different levels based on difficulty. • Allow for alternate forms of responses- drawing or speaking Accommodate Instructional Strategies: use of post-its, instead of writing to demonstrate knowledge when you are reading aloud text, graphic organizers, one-on-one not specifically assessing writing instruction, class website (Google Classroom), handouts, • Allow the use of an online dictionary to look up the definition list with visuals, extended time definition and hear the pronunciation of unknown words Provide graphic representations, gestures, drawings, • Allow extra time to complete assignments or tests • Allow students to demonstrate understanding of a problem equations, and pictures during all segments of instruction by drawing a functional model of the answer and then • Utilize program translations tools such as Snap and Read (if explaining the reasoning orally and/or writing. available) • Provide breaks between tasks, use positive reinforcement, • Utilize graphic organizers which are concrete, pictorial ways use proximity of constructing knowledge and organizing information Use sentence frames and questioning strategies so that Work in a small group • Use large print books, Braille, or digital texts • students will explain their thinking/ process of how to solve real life problems. Strategies for students with 504 plans Reword questions in simpler language • • Provide class notes ahead of time to allow students to preview material and increase comprehension • Provide extended time **Gifted and Talented Students at Risk for Failure** Organize and offer flexible small group learning Assure students have experiences that are on the Concrete-• • opportunities / activities. Pictorial- Abstract spectrum Utilize elevated contextual complexity • Modify Instructional Strategies; extended time, reading Inquiry based or open-ended assignments, performance aloud text, graphic organizers, flexible grouping, one-on-one instruction, class website (Google Classroom), inclusion of tasks and projects more visuals and manipulatives, Utilize Scaffolded Allow more time to study concepts with greater depth Questioning, Field Trips, Google Expeditions, Peer Support, Provide options, alternatives and choices to differentiate Modified Assignments, Chunking of Information, Peer and broaden the curriculum. Buddies Promote the synthesis of concepts and making real world Assure constant parental/ guardian contact throughout the • connections year with successes/ challenges Provide students with enrichment practice that are Provide academic contracts to students and guardians imbedded in the curriculum Create an interactive notebook with samples, key • allowing students to design problems to be • vocabulary words, student goals/ objectives. addressed by the class Always plan to address students at risk in the designing of allowing students to modify the lesson by • 0 introducing a related phenomenon learning tasks, instructions, and directions. allow for interest-based extension activities Try to anticipate where the needs will be and then address • 0 Utilize an enhanced set of introductory activities (e.g. them prior to lessons. phenomena, organizers, concept maps etc.) Teacher should allow for preferential seating • Provide whole group enrichment explorations. Include Visual Cues/Modeling • Teach cognitive and methodological skills • Allow for technology Integration, especially Assistive • Technology Allow for the use of stations . Organize integrated problem-solving simulations.

21ST CENTURY SKILLS

NJSLS CAREER READINESS, LIFE LITERACIES AND KEY SKILLS

An education in career readiness, life literacies, and key skills fosters a population that: continually self-reflects and seeks to improve the essential life and career practices that lead to success; uses effective communication and collaboration skills and resources to interact with a global society; possesses financial literacy and responsibility at home and in the broader community; plans, executes, and alters career goals in response to changing societal and economic conditions; and seeks to attain skill and content mastery to achieve success in a chosen career path.

New Jersey Student Learning	Standards for Career Readiness,	Life Literacies and Key Skills

9.1 Personal Financial Literacy 9.4 Life Literacies and Key Skills Civic Responsibility: Creativity and Innovation:

You can give back in areas that matter to you.

• **9.1.12.CFR.1:** Compare and contrast the role of philanthropy, volunteer service, and charities in community development and quality of life in a variety of cultures.

<u>9.2 Career Awareness, Exploration and Preparation</u> Career Awareness and Planning:

An individual's passions, aptitude and skills can affect his/her employment and earning potential.

• **9.2.12.CAP.2:** Develop college and career readiness skills by participating in opportunities such as structured learning experiences, apprenticeships, and dual enrollment programs.

9.3 Career and Technical Education

Engineering and Technology Career Pathway

• **9.3.ST-ET.5:** Apply the knowledge learned in STEM to solve problems.

Science and Mathematics Career Pathway

- **9.3.ST-SM.2**: Apply science and mathematics concepts to the development of plans, processes and projects that address real world problems.
- **9.3.ST-SM.3:** Analyze the impact that science and mathematics has on society.

Collaboration with individuals with diverse perspectives can result in new ways of thinking and/or innovative solutions. Curiosity and a willingness to try new ideas (intellectual risktaking) contributes to the development of creativity and innovation skills.

- **9.4.12.Cl.1:** Demonstrate the ability to reflect, analyze and use creative skills and ideas.
- **9.4.12.Cl.3:** Investigate new challenges and opportunities for personal growth, advancement and transition.

Critical Thinking and Problem-solving:

The ability to solve problems effectively begins with gathering data, seeking resources, and applying critical thinking skills.

- **9.4.12.CT.1:** Identify problem-solving strategies used in the development of an innovative product or practice.
- **9.4.12.CT.3:** Collaborate with individuals to analyze a variety of potential solutions to climate change effects and determine why solutions may work better than others (e.g., political. economic, cultural).

Digital Citizenship:

Sending and receiving copies of media on the internet creates the opportunity for unauthorized use of data, such as personally owned video, photos, and music. Digital identities must be managed in order to create a positive digital footprint.

• **9.4.12.DC.4:** Explain the privacy concerns related to the collection of data (e.g. cookies) and generation of data through automated processes that may not be evident to users

Information and Media Literacy:

Digital tools can be used to modify and display data in various ways that can be organized to communicate ideas.

• **9.4.12.IML.2:** Evaluate digital sources for timeliness, accuracy, perspective, credibility of the source, and relevance of information, in media, data, or other resources.

Technology Literacy:

Different digital tools have different purposes. Collaborating digitally as a team can often develop a better artifact than an individual working alone.

atal tools based on features such as apacities and utility for fied task ne effectiveness of the process and e environments. te in online learning communities or ual worlds to analyze and propose a orld problem.
apa ied ie e e er te in ual orld

Practices

- Act as a responsible and contributing community member and employee.
- Consider the environmental, social and economic impacts of decisions.
- Demonstrate creativity and innovation.
- Utilize critical thinking to make sense of problems and persevere in solving them.
- Model integrity, ethical leadership and effective management.
- Plan education and career paths aligned to personal goals.
- Use technology to enhance productivity increase collaboration and communicate effectively.

NJSLS COMPUTER SCIENCE & DESIGN THINKING

All students will be prepared to succeed in today's knowledge-based economy by providing equitable and expanded access to high-quality, standards-based computer science and technological design education. <u>https://www.nj.gov/education/standards/compsci/Docs/2020%20NJSLS-CSDT.pdf</u>

8.1 Computer Science

Data & Analysis: Computing systems exist to process data. The amount of digital data generated in the world is rapidly expanding, so the need to process data effectively is increasingly important. Data is collected and stored so that it can be analyzed to better understand the world and make more accurate predictions.

- **8.1.12.DA.5**: Create data visualizations from large data sets to summarize, communicate, and support different interpretations of real-world phenomena.
- **8.1.12.DA.6**: Create and refine computational models to better represent the relationships among different elements of data collected from a phenomenon or process.

Algorithms & Programming: An algorithm is a sequence of steps designed to accomplish a specific task. Algorithms are translated into programs, or code, to provide instructions for computing devices. Algorithms and programming control all computing systems, empowering people to communicate with the world in new ways and solve compelling problems.

- **8.1.12.AP.1**: Design algorithms to solve computational problems using a combination of original and existing algorithms.
- **8.1.12.AP.2**: Create generalized computational solutions using collections instead of repeatedly using simple variables.
- **8.1.12.AP.3**: Select and combine control structures for a specific application based upon performance and readability, and identify trade-offs to justify the choice.
- 8.1.12.AP.5: Decompose problems into smaller components through systematic analysis, using constructs such as procedures, modules, and/or objects.
- 8.1.12.AP.6: Create artifacts by using procedures within a program, combinations of data and procedures, or independent but interrelated programs.

8.2 Design Thinking

Engineering Design: People design for enjoyment and to solve problems, extend human capabilities, satisfy needs and wants, and improve the human condition. Engineering Design, a systematic approach to creating solutions to technological problems and finding ways to meet people's needs and desires, allows for the effective and efficient development of products and systems.

- **8.2.12.ED.1**: Use research to design and create a product or system that addresses a problem and make modifications based on input from potential consumers.
- 8.2.12.ED.4: Design a product or system that addresses a global problem and document decisions made based on research, constraints, trade-offs, and aesthetic and ethical considerations and share this information with an appropriate audience.

Interaction of Technology and Humans:

Societies influence technological development. Societies are characterized by common elements such as shared values, differentiated roles, and cultural norms, as well as by entities such as community institutions, organizations, and businesses. Interaction of Technology and Humans concerns the ways society drives the improvement and creation of new technologies, and how technologies both serve and change society.

- **8.2.12.ITH.1**: Analyze a product to determine the impact that economic, political, social, and/or cultural factors have had on its design, including its design constraints.
- **8.2.12.ITH.2**: Propose an innovation to meet future demands supported by an analysis of the potential costs, benefits, trade-offs, and risks related to the use of the innovation.

UNIT PACING GUIDE					
Lesson/Investigation	Learning Goal(s)	NGSS Performance Expectation(s)	Pacing		
Investigation #1: Modeling Motion	Students construct various models to represent the motion of macroscopic objects that obey Newton's laws.	HS-PS2-1, HS-PS2-2, HS-PS2-4	10 days (Plus, optional extension task(s) if time allows within the allotted 10-day window.)		
Investigation #2: Forces	Students explore forces and how they affect the motion of objects.	HS-PS2-1, HS-ESS2-1	13 days (Plus, optional extension task(s) if time allows within the allotted 13-day window.)		

LESSON #1 PACING GUIDE WITH EMBEDDED ASSESSMENTS Suggested Instructional Days: (10)

Investigation #1: Modeling Motion

Students construct various models to represent the motion of macroscopic objects that obey Newton's laws. In this investigation, students explore the use of models to explain and understand motion. Each of the model types presented in the investigation is grounded in mathematical relationships: vectors drawn to scale to represent the magnitude and direction of velocity or acceleration, dot diagrams that show how displacement changes with time, and graphs of position, velocity, or acceleration.

		NJSLS Specific to th	is Investigat	ion/Lesson		
Performance Expectation	erformance Expectation HS-PS2-1 Analyze data to support the claim that Newton's second law of motion describes the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration.					
Science & Engineerin	g Practices	Cross-Cutting C	oncepts	Disci	plinary Core Ideas	
Analyzing and Interpreting	g Data	Cause and Effect		PS2.A: Forces and N	Notion	
Performance Expectation	on HS-PS2	-2 Use mathematical	l representat	ions to support the	e claim that the total	
	momer	omentum of a system of objects is conserved when the		served when there	e is no net force on the system.	
Science & Engineerin	g Practices	ces Cross-Cutting Concepts		Disci	Disciplinary Core Ideas	
Using Mathematics and Co Thinking	omputational	Systems and System	Models	PS2.A: Forces and N	Aotion	
Performance Expectation	on HS-PS2 Coulom objects	- 4 Use mathematica b's Law to describe	l representat and predict t	ions of Newton's Li he gravitational an	aw of Gravitation and d electrostatic forces between	
Science & Engineerin	g Practices	Cross-Cutting C	oncepts	Disci	plinary Core Ideas	
Using Mathematics and Co	omputational	Patterns		PS2.B: Types of Inte	eractions	
тліпкіпд						
Anchoring Phenom	enon					
	must un concep Anchor → How Studen → Inqu	 must understand motion, forces, and how forces affect objects. They must apply the concepts of velocity and acceleration. Anchoring Phenomenon video → How will we get to Mars? Student Handbook → Inquiry Launch, p. 2 				
Investigative Pheno	omenon					
How did this rock move across the valley? phy mo exp vel Inv \rightarrow 1 Mo \rightarrow 2		laining PhenomenaAnalyzing the motion of objects is essential to understanding allsical systems. In this investigation, students construct various models to represent thetion of macroscopic objects that obey Newton's laws. They define acceleration andlore mathematical methods to calculate instantaneous velocity and displacement whenocity is changing.estigative Phenomenon videolow did this rock move across the valley?deling WorksheetModeling MotionStudent Handbook p. 4-49				
Learning Goal	Teache	r Preparation	Instructi	onal Sequence	Assessments	
EXPERIENCE 1 (2.5	Teacher's Gu	ide	ENGAGE		Experience Assessment	
days)	→ p. 10		Teachers' (Guide:	Student Handbook	
Displacement and	-		Everyday P	henomenon	→ Revisit Investigative	
Velocity	Differentiatio	<u>on</u>			Quiz:	

Students learn about	→ Review the versions of each lab;	→ Everyday Phenomenon,	→ Displacement and Velocity
the use of	select the appropriate version(s) for	p. 10	Investigation Assessment
mathematical	each student/student group	NOTE: Introduce students to	Performance-Based
representations to	→ See "Address Misconceptions"	this investigation with the	Assessment
model motion.	section of Teacher Guide; provides	Investigative Phenomenon	-> Sneed Acceleration and
	ideas to address common student	video. Its purpose is to provide	Trajectory
	preconceptions with tips and	students with another	
	explanations.	opportunity to interact with an	
	→ See "Differentiated Instruction"	engaging event and gather	Engineering workbench
	section of Teacher Guide for advice	knowledge necessary to make	Investigation Assessment
	and tips for special needs students	sense of the Anchoring	
	→ See "Remediation Suggestions"	Phenomenon.	NJSLA Released
	section of Teacher Guide; provides		Item/Question(s) link:
	multiple suggestions for students	EXPLORE	→ <u>Using Newton's second law</u>
	struggling with specific concepts.	Inquiry Lab:	(F = ma), select the option that
	$\rightarrow \bigoplus$ Analyzing Data/ \bigoplus Phet	→ Motion Plots	best completes the table to
	Simulation/ 🕀 Explain Video/	Operation:	describe the relationships
	\oplus Math Tutorial/ \oplus Writing About	Displacement and	between force, mass, and
	Science These OPTIONAL activities	Velocity	acceleration of airplanes.
	can be personalized and assigned to	,	
	enhance instruction, as time allows.	EXPLAIN	
		Claim-Evidence-Reasoning:	
	Connection to Anchoring	\rightarrow Position vs. Time Granhs	
	Phenomen <u>on</u>	- Evaluin Video:	
	\rightarrow Students apply the concepts	Explain video.	
	of velocity and acceleration to		
	construct a motion diagram for	Different	
	a mission to Mars and to design	Student Handbook:	
	a mission to acclimate the	→ pgs. 6—20	
	a solution to accumate the		
	astronauts to the acceleration	ELABORATE	
	due to gravity on wars during	Discussion Rubric:	
	the trip.	→ Position vs. Time Graphs	
		Writing About Science:	
	Connection to Investigative	→ Skills in Displacement and	
	<u>Phenomenon</u>	Velocity	
	→ Students explain how		
	different models might be used	EVALUATE	
	to analyze motion in various	Ouiz:	
	real-world systems, including	\rightarrow Displacement and	
	the "sailing stones" of the	Velocity	
	Investigative Phenomenon.	velocity	
EXPERIENCE 2 (2.5	Teacher's Guide	ENGAGE	Experience Assessment
davs)	→ p. 17	Teachers' Guide:	Student Handbook
Acceleration	, b	Everyday Phenomenon	
Students explore	Differentiation		
mothods to apply to	\rightarrow Beview the versions of each lab:	- 17	Quiz:
methods to analyze	select the appropriate version(s) for	p. 17	→ Acceleration
motion when velocity is	each student/student group	NOTE: Introduce students to	Investigation Assessment
changing	\rightarrow See "Address Misconceptions"		Performance-Based
(acceleration).	section of Teacher Guide: provides	video Its purpose is to provide	Assessment
	ideas to address common student	students with another	→ Speed, Acceleration, and
	preconceptions with tips and	opportunity to interact with an	Trajectory
	explanations.	engaging event and gather	Virtual Lab PBA
		knowledge necessary to make	Engineering Workbench

	 → See "Differentiated Instruction" section of Teacher Guide for advice and tips for special needs students → See "Remediation Suggestions" section of Teacher Guide; provides multiple suggestions for students struggling with specific concepts. → ⊕Analyzing Data/ ⊕Phet Simulation/ ⊕Explain Video/ ⊕Math Tutorial/ ⊕Writing About Science These OPTIONAL activities can be personalized and assigned to enhance instruction, as time allows. Connection to Anchoring Phenomenon → Students apply the concepts of velocity and acceleration to construct a motion diagram for a mission to Mars and to design a solution to acclimate the astronauts to the acceleration due to gravity on Mars during the trip. Connection to Investigative Phenomenon → Students use a variety of mathematical representations to analyze constant 	sense of the Anchoring Phenomenon. EXPLORE Inquiry Lab: → Free Fall Acceleration ⊕ Analyzing Data: → Fast Cars ⊕ PhET Simulation: → Acceleration EXPLAIN Student Handbook: → pgs. 21—34 Claim-Evidence-Reasoning: → Acceleration on a Ramp ⊕ Explain Video: → Common Free-Fall Pitfalls ⊕ Math Tutorial: ELABORATE Peer Review Rubric: → Evaluate Acceleration on a Ramp ⊕ Writing About Science: → Skills in Acceleration EVALUATE Quiz: → Acceleration	Investigation Assessment NJSLA Released Item/Question(s) link: → According to Newton's second law (F = ma), which statement best explains why the pilot of the receiver aircraft must increase the throttle to keep up with the tanker aircraft?
EXPERIENCE 3 (3 days)	Teacher's Guide	ENGAGE	Experience Assessment
Circular and Projectile Motion Students develop and use models to analyze common types of accelerated motion, including projectile motion and circular motion.	 → p. 24 Differentiation → Review the versions of each lab; select the appropriate version(s) for each student/student group → See "Address Misconceptions" section of Teacher Guide; provides ideas to address common student preconceptions with tips and explanations. → See "Differentiated Instruction" section of Teacher Guide for advice and tips for special needs students → See "Remediation Suggestions" section of Teacher Guide; provides multiple suggestions for students → See "Remediation Suggestions" section of Teacher Guide; provides multiple suggestions for students struggling with specific concepts. → ⊕ Analyzing Data/ ⊕ Phet Simulation/ ⊕ Explain Video/ ⊕ Math Tutorial/ ⊕ Writing About 	Teachers' Guide: Everyday Phenomenon → p. 24 NOTE: Introduce students to this investigation with the Investigative Phenomenon video. Its purpose is to provide students with another opportunity to interact with an engaging event and gather knowledge necessary to make sense of the Anchoring Phenomenon. EXPLORE Inquiry Lab: → Model Projectile Motion ⊕ Analyzing Data: → Satellites in Circular Orbits ⊕ PhET Simulation:	Student Handbook → Revisit Investigative Phenomenon: Quiz: → Circular and Projectile Motion Investigation Assessment Performance-Based Assessment → Speed, Acceleration, and Trajectory Virtual Lab PBA Engineering Workbench Investigation Assessment NJSLA Released Item/Question(s) link: → The receiver aircraft has a mass of 110,000 kg and has an acceleration of 4.5 m/s2 prior to refueling in flight. The

can be personalized and assigned to	→ Circular and Projectile	receiver aircraft then receives	
enhance instruction as time allows	Motion	20,000 kg of fuel from the	
ennance instruction, as time anows.	WIOTION	<u>50,000 kg of fuel from the</u>	
Connection to Anchoring		tanker aircraft. Using Newton's	
Phenomenon	EXPLAIN Student Use dhe shu	second law (F = ma), describe	
\rightarrow Students apply the concents	Student Handbook:	the change in acceleration after	
- Students apply the concepts	→ pgs. 35—48	<u>refueling.</u>	
of velocity and acceleration to	Claim-Evidence-Reasoning:	Complete the sentence by	
construct a motion diagram for	→ Horizontal Motion of	choosing the correct answers	
a mission to Mars and to design	Falling Objects	from the drop-down menus.	
a solution to acclimate the	🕀 Explain Video:		
astronauts to the acceleration	\rightarrow Demonstrating the		
due to gravity on Mars during	Components of Projectile		
the trip.	Motion		
	🕀 Math Tutorial		
Connection to Investigative			
<u>Phenomenon</u>	ELABORATE		
→ Students use vector	Discussion Rubric:		
representations to explore	→ Horizontal Motion of		
motion in two or more	Falling Objects		
dimensions.	Writing About Science:		
	\rightarrow Skills in Circular and		
	Projectile Motion		
	EVALUATE		
	Quiz:		
	\rightarrow Circular and Projectile		
	Motion		
OPTIONAL Alternate Phenomena by Performance Expectation			
<u>H5-Y5Z-1</u> , <u>H5-Y5Z-2</u> , <u>H5-Y5Z-4</u>			
Note: Optional extension task(s) if time allows within the allotted 10-day window.			

LESSON #2 PACING GUIDE WITH EMBEDDED ASSESSMENTS Suggested Instructional Days: (13)

Investigation #2: Forces

Students explore forces and how they affect the motion of objects. In this investigation, students explore forces and how they affect the motion of objects. They examine the molecular-scale forces that underlie contact forces. They examine the relationship of forces and the geology and changes to Earth's surface.

NJSLS Specific to this Investigation/Lesson					
Performance Expectation	on HS-PS descri mass,	HS-PS2-1 Analyze data to support the claim that Newton's second law of motion describes the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration.			
Science & Engineerin	g Practices	Cross-Cutting Cor	ncepts	Disciplinary	Core Ideas
Analyzing and Interpreting	g Data	Cause and Effect		PS2.A: Forces and Motion	
Performance Expectation	on HS-ES opera featur	HS-ESS2-1 Develop a model to illustrate how Earth's internal and surface processes operate at different spatial and temporal scales to form continental and ocean-floor features.		l surface processes tal and ocean-floor	
Science & Engineerin	g Practices	Cross-Cutting Cor	ncepts	Disciplinary Core Ideas	
Developing and Using Models		Stability and Change		ESS2.A: Earth Materials and Systems ESS2.B: Plate Tectonics and Large-Scale System Interactions	
Anchoring Phenom	enon				
How will we get to Mars? Explaining Phenomena To understand the challenge of sending a rocket to must understand motion, forces, and how forces affect objects. They must a concepts of velocity and acceleration. Anchoring Phenomenon video → How will we get to Mars? Student Handbook → Inquiry Launch, p. 50		a rocket to Mars, students hey must apply the			
Investigative Phenc	omenon				
What caused this rockslide? Explaining Phenomena To ful understand the effects of bala Investigative Phenomenon vid → What caused this rockslide? CER Worksheet → Forces		fully unde alanced ar video le?	rstand the phenomenon of nd unbalanced forces.	rockslides, students must	
Learning Goal	Teache	er Preparation	Ins	tructional Sequence	Assessments
EXPERIENCE 1 (2.5 days) Force, Mass, and Acceleration Students are introduced to Newton's laws of motion and the concepts of inertia and momentum.	 Teacher's Guide → p. 36 Differentiation → Review the versions of each lab; select the appropriate version(s) for each student/student group → See "Address Misconceptions" section of Teacher Guide; provides ideas to address common student preconceptions with tips and explanations. 		ENGAGI Teacher Everyda → Title, NOTE: In investiga Phenome provide s opportur engaging necessar Anchorin	s' Guide: y Phenomenon p. 36 troduce students to this tion with the Investigative enon video. Its purpose is to students with another hity to interact with an event and gather knowledge y to make sense of the g Phenomenon.	Experience Assessment Student Handbook → Revisit Investigative Quiz: → Force, Mass, and Acceleration Investigation Assessment Performance-Based Assessment → Force, Mass, and Acceleration

	 → See "Differentiated Instruction" section of Teacher Guide for advice and tips for special needs students → See "Remediation Suggestions" section of Teacher Guide; provides multiple suggestions for students struggling with specific concepts. → ⊕ Analyzing Data/ ⊕ Phet Simulation/ ⊕ Explain Video/ ⊕ Math Tutorial/ ⊕ Writing About Science These OPTIONAL activities can be personalized and assigned to enhance instruction, as time allows. Connection to Anchoring Phenomenon → Students identify the forces acting on a spacecraft at different points in a mission. They use these considerations to identify criteria for spacecraft materials. Connection to Investigative Phenomenon → Students explore the direction of motion and forces 	 EXPLORE Inquiry Lab: → Forces and Motion ⊕ PhET Simulation: → Force, Mass, and Acceleration EXPLAIN Student Handbook: → pgs. 52-64 Claim-Evidence-Reasoning: → Force, Mass, and Acceleration in Action ⊕ Explain Video: → Newton's Third Law of Motion ⊕ Math Tutorial ELABORATE Discussion Rubric: → Force, Mass, and Acceleration in Action ⊕ Writing About Science: → Skills in Force, Mass, and Acceleration EVALUATE 	Virtual Lab PBA Engineering Workbench Investigation Assessment NJSLA Released Item/Question(s) link: → Using Newton's second law (F = ma), describe the relationships between force, mass, and acceleration of airplanes. Type your answer in the box provided.
EXPERIENCE 2 (2.5	direction of motion and forces acting on the rock. They determine the direction of the sum of the forces. <u>Teacher's Guide</u>	Quiz: → Force, Mass, and Acceleration ENGAGE	Experience
days)	→ p. 42	Teachers' Guide:	Assessment
Types of Forces Students explore different types of forces, including spring, tension, surface, and	Differentiation → Review the versions of each lab; select the appropriate version(s) for each student/student group	Everyday Phenomenon → Title, p. 42 NOTE: Introduce students to this investigation with the Investigative Phenomenon video. Its purpose is to	Student Handbook → Revisit Investigative Quiz: → Types of Forces
centripetal forces.	→ See "Address Misconceptions"	provide students with another	Investigation
	section of Teacher Guide; provides	opportunity to interact with an	Assessment Performance-Based
	 ideas to address common student preconceptions with tips and explanations. → See "Differentiated Instruction" section of Teacher Guide for advice and tips for special needs students → See "Remediation Suggestions" section of Teacher Guide; provides multiple suggestions for students struggling with specific concepts. 	engaging event and gather knowledge necessary to make sense of the Anchoring Phenomenon. EXPLORE Inquiry Lab: → The Buoyant Force ⊕ Analyzing Data: → Vehicle Stopping Distance ⊕ PhET Simulation:	Assessment → Force, Mass, and Acceleration Virtual Lab PBA Engineering Workbench Investigation Assessment NJSLA Released
	Simulation / ⊕Explain Video /	→ Types of Forces	Item/Question(s) link:
	⊕Math Tutorial/⊕Writing About	EXPLAIN	\rightarrow <u>Which question is</u>
	Science These OPTIONAL activities	Student Handbook: → pgs. 65-78	analyzing the data?

	can be personalized and assigned to enhance instruction, as time allows. Connection to Anchoring Phenomenon → Students identify the forces acting on a spacecraft at different points in a mission. They use these considerations to identify criteria for spacecraft materials. Connection to Investigative Phenomenon → Students explain what changed in the environment to	Modeling: → Pinball Launcher Model ⊕ Explain Video: → Introduction to Static and Kinetic Friction ⊕ Math Tutorial ELABORATE Peer Review Rubric: → Evaluate Pinball Launcher Model ⊕ Writing About Science: → Skills in Types of Forces EVALUATE Quiz:	
	lead to a net force on the rock.	\rightarrow Types of Forces	
EXPERIENCE 3 (3 days) Forces on Systems Students distinguish	Teacher's Guide → p. 48	ENGAGE Teachers' Guide: Everyday Phenomenon	Experience Assessment Student Handbook
internal and external forces in systems and investigate forces	Differentiation → Review the versions of each lab; select the appropriate version(s) for each student (student group	→ p. 48 NOTE: Introduce students to this investigation with the Investigative Phenomenon video. Its purpose is to	 → Revisit Investigative Quiz: → Forces on Systems
applied at different locations in a system.	 → See "Address Misconceptions" section of Teacher Guide; provides 	provide students with another opportunity to interact with an	Investigation Assessment
	ideas to address common student preconceptions with tips and explanations.	engaging event and gather knowledge necessary to make sense of the Anchoring Phenomenon.	Performance-Based Assessment → Force, Mass, and
	 → See "Differentiated instruction" section of Teacher Guide for advice and tips for special needs students → See "Remediation Suggestions" 	EXPLORE Inquiry Lab: → Friction	Acceleration Virtual Lab PBA Engineering Workbench Investigation
	section of reacher Guide; provides multiple suggestions for students struggling with specific concepts.	→ Simulation Forces on Systems	Assessment NJSLA Released
	Simulation (Explain Video / Math Tutorial (Writing About Science These OPTIONAL activities can be personalized and assigned to	EXPLAIN Student Handbook: → pgs. 79-94 Modeling: → Atmospheric Pressure on a	Item/Question(s) link: → Which statements are best supported by the data?
	enhance instruction, as time allows. <u>Connection to Anchoring</u>	Sealed Container	Select two of the six statements.
	→ Students identify the forces acting on a spacecraft at different points in a mission	You? Math Tutorial	
	They use these considerations to identify criteria for spacecraft materials.	ELABORATE Peer Review Rubric: → Evaluate Atmospheric Pressure on a Sealed Container	
	Connection to Investigative Phenomenon	 ⊕ Writing About Science: → Skills in Forces on Systems 	

	→ Students construct a model of the forces acting on a rock on a steep hill. They consider the effects on stability from both torques and from the components of the surface force.	EVALUATE Quiz: → Forces on Systems	
EXPERIENCE 4 (3 days)	Teacher's Guide	ENGAGE	Experience
Earth's Surface Forces	→ p. 54	Teachers' Guide:	Assessment
Students explore the		Everyday Phenomenon	Student Handbook
applications of force	<u>Differentiation</u>	→ p. 54	→ Revisit Investigative
and Newton's laws in	\rightarrow Review the versions of each lab;	NOTE: Introduce students to this	Quiz:
geology.	select the appropriate version(s) for	investigation with the Investigative	→ Earth's Surface Forces
	\rightarrow See "Address Misconceptions"	provide students with another	Investigation
	section of Teacher Guide: provides	opportunity to interact with an	Assessment
	ideas to address common student	engaging event and gather knowledge	Performance-Based
	preconceptions with tips and	necessary to make sense of the	Assessment
	explanations.	Anchoring Phenomenon.	ightarrow Force, Mass, and
	→ See "Differentiated Instruction"		Acceleration
	section of Teacher Guide for advice		Virtual Lab PBA
	\rightarrow See "Remediation Suggestions"	A Mechanical Weathering of Pock	Engineering Workbench
	section of Teacher Guide: provides		Investigation
	multiple suggestions for students	\rightarrow Topography	Assessment
	struggling with specific concepts.	PhET Simulation:	
	$\rightarrow \bigoplus$ Analyzing Data/ \bigoplus Phet	\rightarrow Earth's Surface Forces	Item/Question(s) link:
	Simulation/ \bigoplus Explain Video/	• • • • • • • • • • • • • • • •	\rightarrow Based on Figure 1
	\bigoplus Math Tutorial/ \bigoplus Writing About	EXPLAIN	which statement best
	Science These OPTIONAL activities	Student Handbook:	summarizes the
	can be personalized and assigned to	→ pgs. ##	summarizes the
	enhance instruction, as time allows.	Claim-Evidence-Reasoning:	pattern of sunspot
	Connection to Anchoring	→ Title	activity over the past
	Phenomenon	🕀 Explain Video:	<u>2,000 years?</u>
	→ Students identify the forces	→ Title	
	acting on a spacecraft at	Hath Tutorial	
	different points in a mission.	FLABORATE	
	They use these considerations	Peer Review Rubric:	
	to identify criteria for spacecraft	\rightarrow Evaluate Mountain Building	
	materials.	Writing About Science:	
	Connection to Investigative	\rightarrow Skills in Earth's Surface Forces	
	Connection to investigative		
	\rightarrow Students choose and explain	EVALUATE	
	one way that human activities	Quiz:	
	can affect the likelihood of a	→ Earth's Surface Forces	
	rockslide occurring.		
OPTIONAL Alternate Phenomena by Performance Expectation			
HS-PS2-1, HS-ESS2-1			

Note: Optional extension task(s) if time allows within the allotted 13-day window.